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Abstract. Truncated singular value decomposition (SVD), also known
as the best low-rank matrix approximation with minimum error mea-
sured by a unitarily invariant norm, has been successfully applied to
many domains such as biology, healthcare, and others, where high di-
mensional datasets are prevalent. To enhance the performance of dealing
with high-dimensional data, sparse truncated SVD (SSVD) is used to
select a few rows and columns of the original matrix along with the best
low-rank approximation. Different from the literature on SSVD focusing
on the top singular value or compromising the sparsity for the seek of
computational efficiency, this paper presents a novel SSVD formulation
that can select the best submatrix precisely up to a given size to maxi-
mize its truncated Ky Fan norm based on one or more singular values.
The fact that the proposed SSVD problem is NP-hard motivates us to
study effective algorithms with provable performance guarantees. To do
so, we first reformulate SSVD as a mixed-integer semidefinite program,
which can be solved exactly for small- or medium-sized instances within
a branch and cut algorithm framework with closed-form cuts, and is
extremely useful to evaluate the solution quality of approximation al-
gorithms. We next develop three selection algorithms based on different
selection criteria and two searching algorithms, greedy and local search.
We prove the approximation ratios for all the approximation algorithms
and show that all the ratios are tight when the selected submatrix ad-
mits the number of rows or columns no larger than that of the data
matrix, i.e., our derived approximation ratios are unimprovable. Our nu-
merical study demonstrates the high solution quality and computational
efficiency of the proposed algorithms. Finally, all our analysis can be
extended to row-sparse PCA.
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1 Introduction

Truncated singular value decomposition (SVD), also known as the best low-rank
matrix approximation, has been successfully applied to many domains such as
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biology, healthcare, and others, where high-dimensional datasets are prevalent.
To enhance the interpretability of the truncated SVD of a data matrix A ∈
Rm×n, this paper proposes the Sparse SVD (SSVD) formulation

(SSVD) w∗ := max
S1⊆[m],S2⊆[n]

{
||AS1,S2

||(k) : |S1| ≤ s1, |S2| ≤ s2
}
, (1)

where the Ky Fan k-norm ‖ · ‖(k) is defined as the sum of k largest singular
values of a matrix, for any subsets S1 and S2, AS1,S2 denotes the submatrix of
A with rows and columns indexed by S1 and S2, respectively.

The combinatorial formulation (1) leads to an intuitive explanation of SSVD
from the perspective of submatrix selection, which is remarked below: for a given
data matrix A, the objective of SSVD (1) is to select the best submatrix of size
at most s1 × s2 with the maximum Ky Fan k-norm. The proposed SSVD (1)
with submatrix selection and low-rank approximation can be applicable to many
data-intensive problems such as biclustering [2, 3] and feature selection [1].

The SSVD (1) is versatile and generalizes many existing models. Particularly,
we show that when matrix A is positive semidefinite and s1 = s2, SSVD (1)
reduces to the well-known Sparse PCA (SPCA) problem [4]. Formally, SPCA
can be defined as

(SPCA) wspca := max
U∈Rn×k

{
tr(U>AU) : U>U = Ik, ||U ||0 ≤ s

}
, (2)

where A ∈ §n+ is a sample covariance matrix, k ≤ s ≤ n are positive integers,
and wspca denotes the optimal value. SPCA (2) can be viewed as a special case
of SSVD (1); thus, SSVD (1) is NP-hard with a reduction to the SPCA problem
that has been notoriously known to be NP-hard and inapproximable.

1.1 Summary of Main Contributions

To solve SSVD (1), we derive an equivalent mixed integer semidefinite program-
ming (MISDP) formulation and effective approximation algorithms using various
selection and searching criteria. Below we list the major contributions in detail.

(i) Based on the MISDP, we derive a family of valid inequalities and a branch
and cut algorithm for SSVD (1), which can solve the small- and medium-
sized instances to optimality (e.g., m = n = 500, s1 = s2 = 5, k = 2) and
help evaluate the solution quality of our proposed approximation algorithms;

(ii) Inspired by the combinatorial formulation (1) of SSVD, we consider three
different selection criteria that are related to its objective function (i.e., the
Ky Fan k-norm), but are much easier to compute, and then propose three
selection algorithms;

(iii) We successfully tailor the greedy and local search algorithms to solve SSVD;
(iv) We derive the approximation ratios and time complexities of our proposed

approximation algorithms for SSVD (1), which are displayed in Table 1.
We prove that all the ratios are tight, i.e., un-improvable when the sparse
parameters satisfy s1 ≤ m/2 and s2 ≤ n/2;
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(v) We remark that the approximation ratio of the first selection algorithm is
independent of k and matches the best-known one of rank-one SPCA;

(vi) All our analyses of exact and approximation algorithms can be extended to
the general SPCA (2), where the results of approximation algorithms are
displayed in Table 2; and

(vii) The numerical study on large-scale instances (e.g., m = 16313, n = 2365)
shows the high solution quality and computational efficiency of our proposed
approximation algorithms.

Table 1. Summary of Approximation Algorithms for SSVD (1)

Selection Algorithms Searching Algorithms

Algorithm Selection I Selection II Selection III Greedy Local Search

Ratio 1/
√
s′ 1/

√
ks′

√
s1s2/(k

√
mn) 1/

√
ks1s2 1/

√
ks1s2

Complexity NP-hard
O((m+ n)(n′ O(n′ log(n′) O(max{s1, s2} O(L/δks1s2

log(n′) + ks1s2)) +mn) (m+ n)ks1s2) (ns1 +ms2))
1 s′ := min{s1, s2}, n′ = max(m,n)
2 L = encoding length of A, and δ > 0 is the strict improvement factor

Table 2. Summary of Approximation Algorithms for SPCA

Selection Algorithms Searching Algorithms

Algorithm Selection I Selection II Selection III Greedy Local Search

Ratio 1/
√
s 1/

√
ks s/(kn) k/s k/s

Complexity NP-hard O(n(n log(n) + ks2)) O(n log(n) + n2) O(nks3) O(L/δnks3)
1 L = encoding length of A, and δ > 0 is the strict improvement factor
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