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Abstract. We investigate a hierarchy of semidefinite bounds ϑ(r)(G)
(r ∈ N) for the stability number of a graph α(G), based on its copositive
programming formulation. This hierarchy was introduced by de Klerk
and Pasechnik [SIAM J. Optim. 12 (2002), pp.875–892], who conjectured
convergence to α(G) in r = α(G)− 1 steps. Even the weaker conjecture
claiming convergence in finitely many steps is still open. We establish
links between this hierarchy and sum-of-squares hierarchies based on
the Motzkin-Straus formulation of α(G), which we use to show finite
convergence when G is acritical (i.e., when α(G \ e) = α(G) for all edges
e of G). This result relies, in particular, on understanding the structure of
the minimizers of the Motzkin-Straus formulation and showing that their
number is finite precisely when G is acritical. As a byproduct we show
that deciding whether a standard quadratic program has finitely many
minimizers does not admit a polynomial-time algorithm unless P=NP.
We also investigate the structure of the graphs satisfying ϑ(0)(G) = α(G).
In particular, we give an algorithmic procedure that reduces the task of
testing this property to the class of acritical graphs, and we show that
a critical graph G has this property if and only if it can be covered by
α(G) cliques.
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Given a graph G = (V,E), its stability number α(G) is defined as the largest
cardinality of a stable set in G. Computing α(G) is a central problem in combi-
natorial optimization, well-known to be NP-hard (see for example [2]). A start-
ing point to define hierarchies of approximations for the stability number is
the following formulation by Motzkin and Straus [5], which expresses α(G) via
quadratic optimization over the simplex ∆n = {x ∈ Rn : x ≥ 0,

∑n
i=1 xi = 1}:

1

α(G)
= min{xT (AG + I)x : x ∈ ∆n}, (M-S)

where AG is the adjacency matrix of G. Based on (M-S), de Klerk and Pasech-
nik [1] proposed the following copositive reformulation:

α(G) = min{t : t(I +AG)− J ∈ COPn}.
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Here, COPn = {M ∈ Sn : xTMx ≥ 0 ∀x ∈ Rn+} is the copositive cone, consisting
of all copositive matrices. As linear optimization over COPn is a hard problem,
Parrilo [2000] introduced the following cones:

K(r)
n =

{
M ∈ Sn :

( n∑
i=1

x2i

)r
(x◦2)TMx◦2 ∈ Σ

}
,

where x◦2 = (x21, x
2
2, . . . , x

2
n) and Σ is the set of sum-of-squares polynomials. The

cones K(r)
n provide sufficient conditions for matrix copositivity: for any integer

r ≥ 0 we have K(r)
n ⊆ K(r+1)

n ⊆ COPn. Moreover they cover the interior of the
copositive cone:

int(COPn) ⊆
⋃
r≥0

K(r)
n ⊆ COPn.

De Klerk and Pasechnik [1] used the cones K(r)
n to define the parameters:

ϑ(r)(G) = min{t : t(I +AG)− J ∈ K(r)
n },

which thus provide a hierarchy of upper bounds on the stability number, con-
verging asymptotically to it: for any r ≥ 0, we have α(G) ≤ ϑ(r+1)(G) ≤ ϑ(r)(G)
and limr→∞ ϑ(r)(G) = α(G). The crucial property is that linear optimization

over the cone K(r)
n can be modelled as a semidefinite program and thus the

parameter ϑ(r)(G) can be computed using semidefinite optimization.
It is known that the parameter ϑ(0)(G) coincides with ϑ′(G), the strength-

ening of the theta number ϑ(G) from Lovász [4], obtained by adding a non-
negativity constraint. Moreover, de Klerk and Pasechnik proved in [1] that
ϑ(r)(G) < α(G)+1 for any r ≥ α(G)2. So, it is possible to find α(G) by rounding
after α(G)2 steps. On the other hand, they also conjectured finite convergence
in α(G)− 1 steps. This would imply that rounding is in fact not needed.

Conjecture 1 (De Klerk and Pasechnik [1]). Let G be a graph. Then we have
ϑ(α(G)−1)(G) = α(G).

However, it is not even known whether finite convergence holds at some step,
i.e., whether ϑ(r)(G) = α(G) for some r ∈ N.

Conjecture 2 (weaker). Let G be a graph. Then ϑ(r) = α(G) for some r ∈ N.

Our first main result gives a partial positive answer to this second conjecture.

Theorem 1. [3] Assume G is acritical, i.e., α(G \ e) = α(G) for all edges e of
G. Then finite convergence holds: ϑ(r)(G) = α(G) for some r ∈ N.

As a tool to show this result, we consider the Lasserre hierarchy for the
problem (M-S): for an integer r ≥ 1 define the parameter

f
(r)
G = sup

{
λ : xT (AG + I)x− λ = σ0 +

∑n
i=1 σixi + u(1−

∑n
i=1 xi)

where u ∈ R[x], σ0, σi ∈ Σ, deg(σ0), deg(σixi) ≤ 2r
}
.
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As a first step we show the inequality

1

α(G)
≥ 1

ϑ(2r)(G)
≥ f (r+1)

G

for all r ≥ 0. The second key step is showing finite convergence of the parameters

f
(r)
G to 1

α(G) for acritical graphs, which then directly implies Theorem 1. As a

main ingredient, we characterize the set of minimizers of problem (M-S) and
show that their number is finite if and only if the graph G is acritical.

The notion of criticality plays a crucial role in the study of these hierarchies.
On the one hand, we can show finite convergence for the class of acritical graphs.
On the other hand, it would suffice to show Conjectures 1 and 2 for the class of
critical graphs, i.e., for the graphs satisfying α(G \ e) = α(G) + 1 for all edges e.
In addition, we reduce the problem of deciding whether an edge e is acritical (i.e.,
α(G \ e) = α(G)) to the problem of deciding whether a quadratic program has
finitely many minimizers. As a consequence, we obtain our second main result.

Theorem 2. If there is a polynomial time algorithm to decide whether a stan-
dard quadratic program has finitely many global minimizers then P = NP .

Graphs with ϑ(0)(G) = α(G)

We also investigate the graphs for which the first relaxation ϑ(0)(G) is exact.
The study of these graphs is relevant to the question of understanding whether
the basic semidefinite relaxation (also known as Shor relaxation) for polynomial
optimization problems is exact. We characterize the critical graphs for which the
first relaxation is exact.

Theorem 3. Let G be a critical graph. Then, we have ϑ(0)(G) = α(G) if and
only if G is the disjoint union of cliques.

We also give a polynomial-time algorithmic procedure that reduces the question
of deciding whether a graph satisfies ϑ(0)(G) = α(G) to the same question for
acritical graphs.

Theorem 4. For any fixed integer α, the problem of deciding whether a graph
G with stability number α satisfy ϑ(0)(G) = α is reducible in polynomial time to
the same problem for a graph with no critical edges.
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