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1 Introduction

We consider (implicitly binary) quadratic programming problems of the form

inf

{

f(x) :=
1

2
xTQx+ cTx : x ∈ ext(P )

}

(1)

where Q ∈ R
n×n is symmetric, c ∈ R

n, and P := {x ∈ R
n : x ≥ 0, Ax = b}

with A ∈ R
m×n and b ∈ R

m is assumed to define a 0-1-polytope whose vertices
(extreme points) we refer to by ext(P ). This special case covers in particular
Unconstrained Binary Quadratic Programs (UBQPs), the Quadratic Assignment
Problem (QAP), and further 0-1 problems where Ax = b is total dual integral [4].

Interestingly, while the linear simplex algorithm [3] applied to P implicitly
delivers a sequence of improving integer feasible solutions from ext(P ), there
appears to be no prescribed access to such a sequence in the quadratic case. In
particular, the quadratic simplex algorithm (e.g. [1, 2, 5]) (for convex f) cannot
provide one since it is supposed to find inf {f(x) : x ∈ P} which is not necessarily
attained at a vertex of P .

Yet, and although global optimality cannot be guaranteed (even if f is con-
vex), sequences of f -improving vertices of P are still of practical interest. Pro-
viding these, the presented primal simplex algorithm generalizes on local im-
provement heuristics for e.g. UBQPs and the QAP. It may particularly serve
to improve vertex solutions obtained from other contexts (such as branch-and-
bound), ideally an incumbent feasible basis by simply switching pivoting rules.

2 A Primal Quadratic Simplex Algorithm

As is common, we assume that the description of P in (1) satisfies n ≥ m and
rank(A) = m. To simplify presentation, we further assume that potential upper
bounds on the variables x (such as x ≤ 1) are either implied by or part of the
system Ax = b. For a set S ⊆ {1, . . . , n}, we denote by AS the submatrix of A
consisting of the columns indexed by S, and by xS we denote the vector con-
sisting of the components of x indexed by S (for singletons, the index is used).
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In particular, for certain B ⊆ {1, . . . , n} with |B| = m, and the corresponding
N := {1, . . . , n} \B, we will refer to xB and xN as the basic and non-basic vari-
ables, respectively. In addition, we denote with QiB (QBi) the i-th row (column)
of Q w.r.t. the columns (rows) associated with B, and accordingly, with QBB

the symmetric matrix consisting of the rows and columns indexed by B.

Let some initial partition (B,N) of a basic feasible solution (xB , xN )T to
(1) be given (e.g. from an incumbent solution of a branch-and-bound search) or
derived (e.g. via a phase-I linear simplex algorithm) provided that one exists.
Recall that if some variable xr, r ∈ N , is to enter the basis then we are about
to move to a solution of ABxB + Arxr = b, i.e., we will turn xB into x′

B
=

A−1
B

b − A−1
B

Arx
′

r. Thus, d = A−1
B

Ar is the direction of change w.r.t. xB, and
feasibility requests that x′

B
= xB − dx′

r ≥ 0 which imposes a limit on the
increase of x′

r only if di > 0 for at least one i ∈ {1, . . . ,m} (ratio test). In the here
considered case of a 0-1-polytope, this is guaranteed (and di ∈ {−1, 0, 1}). Hence,
the mentioned limit or primal step length θP := max {t ∈ R : xB − td ≥ 0} is well
defined and predetermined, and so is the new solution:

(

x′

B

x′

r

)

=

(

xB − θPd
θP

)

and x′

k = 0 for all k ∈ {1, . . . , n} \ (B ∪ {r}) (2)

Moreover, referring to the i-th index in B by B(i), any i ∈ {1, . . . ,m} with
xB(i) − θPdi = 0 gives a candidate variable xB(i) to leave the basis and thus to
define a new unique basic feasible solution.

To decide whether a basis exchange involving xr as the entering variable is
worthwhile (i.e., leads to a decrease in the objective), we outline in this extended
abstract a short-hand rationale. It does not exploit dual solution information
(such as reduced costs) which may reduce computational efforts for deciding on
candidates to enter the basis (pricing) especially but not only in the case of
convex f . Fortunately, one can still exploit that the change of f(x) = cBxB +
1
2x

T

B
QBBxB to f(x′) as of (2) only depends on xB , xr, and θP . Indeed, by defining

η := QBB(−d) +QBr as well as γ := −dTη − dTQBr +Qrr,

we find after substituting and resolving that

f(x′) = crθP + cTB(xB − θPd) +
1

2
[(xB − θPd) θP ]

[
QBB QBr

QT

Br
Qrr

] [

(xB − θPd)
θP

]

= f(x) + θP (cr − cTBd+ xT

Bη) +
1

2
θ2P γ

︸ ︷︷ ︸

=:∆r

while ∆r further simplifies for our problem (1) as θP ∈ {0, 1}.

A straightforward employment of this rationale to determine whether a strict
improvement is possible for the current basic feasible solution, i.e. to check ex-
plicitly whether θP = 1 and ∆r < 0 for at least one non-basic variable xr, is
displayed as Algorithm 1. It terminates only if this is not the case, i.e., if the cur-
rent basis is locally optimal which is guaranteed to happen since P is bounded.
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1 Solve the system ABxB = b;
2 repeat

3 forall r ∈ N do

4 Solve the system ABd = A·r;

5 θP ← min
{

xB(i)

di
: di > 0, i ∈ {1, . . . ,m}

}

;

6 if θP > 0 then

7 η ← QBB(−d) +QBr;

8 γ ← Qrr − dTη − dTQBr;

9 ∆r ← cr − cT
B
d+ xT

B
η + 1

2γ;
10 if ∆r < 0 then

11 xB ← xB − θPd;
12 xr ← θP ;

13 Choose i ∈ {1, . . . ,m} : di > 0,
xB(i)

di

= θP ;

14 B ← (B \ {i}) ∪ {r};
15 N ← (N \ {r}) ∪ {i};
16 Go to line 3;

17 return x;

Algorithm 1: A Primal Quadratic Simplex Algorithm for 0-1 Polytopes

Theorem 1. Started with an initial partition (B,N) of a basic feasible solution
x = (xB , xN )T, Algorithm 1 terminates in a finite number of steps with a locally
optimum basic feasible solution x∗ = (x∗

B∗ , x∗

N∗)T such that f(x∗) ≤ f(x).

Remark 1. By the restriction to strictly improving pivots, cycling is impossible.
On the other hand, (ignored) pivots with θP = 0 may exist such that the objec-
tive value could be strictly decreased after that pivot. Thus, a locally optimum
basic feasible solution but not necessarily a locally optimum vertex is computed.

Naturally, the initial basis and the applied pivoting rule impact the perfor-
mance of Algorithm 1. While a competitiveness to problem-specific and multi-
start heuristics cannot be expected, experiments with established QAP, UBQP,
and Maximum Cut instances reveal moderate iteration counts and sometimes
strong quality improvements.
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