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Abstract. A (bipartite) biindependent pair in a bipartite graph G =
(ViU Vs, E) is a pair (A, B), where A C V4, B C V, and the union AU B
is independent in G. We investigate the following two parameters g(G)
and h(G), that are defined, respectively, as the maximum product |A|-| B|
\‘/ﬁu@\ ’
(A, B) in G. These parameters have many applications, in particular, for
bounding maximum product-free subsets in groups and the nonnegative
rank of a matrix. We define semidefinite programming upper bounds on
9(G@) and h(G). We show they can be seen as quadratic variations of the
Lovdsz YJ-number, a well-known upper bound on a(G), equal to it for
G bipartite. We also show links among them as well as with an earlier
parameter by Haemers. In addition we formulate closed-form eigenvalue
bounds, which coincide with the semidefinite bounds for edge-transitive
graphs.

and the maximum ratio taken over all such biindependent pairs
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Biindependent pairs and bicliques

Given a graph G = (V| E), a biindependent pair in G is a pair (A, B) of disjoint
subsets of V' such that no pair of nodes {i,j} € A x B is an edge of G. When
G is bipartite, with bipartition V' = V; U V5, one is also interested in bipartite
bitndependent pairs, which means satisfying A C Vi and B C V5. The maxi-
mum cardinality |A| + |B| of such a biindependent pair is a(G), the stability
number of G, well-known to be computable in polynomial time using match-

ing algorithms. We consider the following two other parameters, asking for the
maximum product |A| - |B| and the maximum ratio %:
9(G) =max{|A| - |B]: A C V1, B C Va, (A, B) is a biindependent pair in G},

h(G) = max{ [ALIBL . 4 ¢ Vi,B C Va,, (A, B) is a biindependent pair in G}.

[Al+B]

While computing the parameter g(G) has been shown to be NP-hard by Peeters [9],
the exact complexity status of the parameter h(G) is still unknown.

The parameter h(G) was introduced by Vallentin [10], who observed its rel-
evance to maximum product-free subsets in groups in work of Gowers [4]. The
parameter g(G) has many applications, in particular, to bounding the rectangle
covering number and the nonnegative rank of nonnegative matrices.
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Semidefinite and eigenvalue-based bounds

The parameters g(G) and h(G) can be formulated as polynomial optimization
problems, which leads to hierarchies of semidefinite programming (SDP) upper
bounds, able to find the original parameters in finitely many steps (in fact, in
a(Q) steps). We investigate in particular the SDP bounds obtained at the lowest
level, which take the form

hi(G) = )Igggg{@, X):Tr(X) =1, X3 =0 ({i,j} € E), X = 0}, (1)
ia, T
01(6) = max {(C.%) (diagl(X) d g)((X) ) =0, Xy =0 {i,j} € B},
(2)

: 0 J . -
setting C := % (J; . VB’V2>, where Jy, v, is the all-ones matrix in RV1*V2,
1,V2

These two bounds can be seen as quadratic variations of the parameter J(G),
introduced by Lovész [8] as upper bound on «(G) for any G (and equal to a(G)
when G is bipartite). Indeed, if we replace the objective (C,X) by (J,X) in
program (1) and by Tr(X) in program (2), then we obtain ¥(G).

We show the following relations between the parameters h(G), g(G), h1(G),
91(G), and «(G) for any bipartite graph G.

Proposition 1. For any bipartite graph G we have
h(G) < 5V 9(G) < hi(G) < 3V g1(G) < 3a(G).
When G is r-regular we can give eigenvalue-based closed-form upper bounds.

Proposition 2. Assume G is bipartite r-regular, set n := |Vi| = |Val|, and let
Ao be the second largest eigenvalue of the adjacency matriz of G. Then

n2\2 .
5 nA ~ =25 ifr < 3)s
hi(G) < h(G) i= ——, Q) < 3(Q) = ! Cafr) 5
1(G) < hG) 20\ + 1) 91(G) <4(G) {8(,;%;2) otherwise,

with equality hy (G) = h(G) and ¢1(G) = §(G) when G is edge-transitive.
Observe that the upper bound h(G) sharpens the bound h(G) < 2o from [10].

Application to biindependent pairs and bicliques in arbitrary graphs

One may also consider bindependent pairs in an arbitrary graph G (not nec-
essarily bipartite). However, they correspond to the bipartite biindependent
pairs in an associated bipartite graph By(G), whose node set is V U V', where
V' ={i :i € V} is a disjoint copy of V, and whose edges are the pairs {7,7'}
(1 €V),{i,j'} and {j,4'} for {4, j} € E. Indeed, a pair (A, B) is biindependent in
G precisely when (A, B’ := {i’ : i € B}) is biindependent in By(G) (with A CV
Al-|B

Fr ok
dependent pairs in G, are captured by the parameters g(By(G)) and h(By(G))

for biin-

and B’ C V’). Hence, the maximum product |A| - |B| and ratio
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for the bipartite graph B(G). So we obtain hierarchies of SDP bounds also for
these parameters. Interestingly, the SDP bound hy(By(G)) recovers an earlier
parameter introduced by Haemers [5]. Finally, one can also model bicliques in
any graph G, i.e., the pairs (A, B) of disjoint vertex subsets with A x B C E,
since they correspond to the biindependent pairs in the complementary graph
G=(V,E).

Applications

We now briefly describe two applications of the parameters g(G) and h(G).

Let M € RV1*"2 be a nonnegative matrix. Its nonnegative rank rank (M)
is the smallest integer r for which there exist nonnegative vectors a, € ]RKI
and by € RY? (¢ € [r]) such that M = 3°;_, asb}. The nonnegative rank is
an important parameter, which is hard to compute [11]. Hence one needs good
bounds for it. One such bound is provided by the rectangle covering bound rc(M),
defined as the smallest number of admissible rectangles A x B C V; x V5 needed
to cover the support Sy = {(4,7) : M;; # 0} of M. Here Ax B C Vi x V3 is
an admissible rectangle if A x B C Sps. Then we have re(M) < rank(M). The
rectangle covering bound can be very useful; it was used, e.g., in [2] to show an
exponential lower bound on the extension complexity of combinatorial polytopes
such as the traveling salesman and correlation polytopes.

Also the parameter rc(M) is not easy to compute. To approximate it, one
can consider the bipartite graph Bjs, with vertex set V3 U V5 and edge set
Ey := (V4 x V5) \ Sar. Then admissible rectangles for M correspond precisely
to biindependent pairs in Bjy; and one can show that

re(M) - g(Bar) = |Sal-

Hence, an upper bound on ¢g(Bjs) gives directly a lower bound on re(M) and
thus a lower bound on the nonnegative rank rank, (M).

The parameter h(G) is useful for bounding the maximum size of a sum-free
subset in a group. Let I" be a finite group. Then a set A C I' is called sum-free
if ab € A for all a,b € A, and one is interested in finding a largest such set (see
[4,7] for background on this problem).

Given A C I',let G4 = (V1 U Vs, E) be the associated bipartite Caley graph,
with V4 = V5 = I' and {x,y} € E if and only if y = ax for some a € A.
If A is sum-free, then (A, A) is a biindependent pair in G4 and thus we have

“Qil = % < h(QG). Hence, upper bounds on h(G 4) give rise to upper bounds

on sum-free subsets in I'. In this way, Vallentin [10] could recover a result by
Gowers [4]. Note that for this application we are in fact only interested in bal-
anced biindependent pairs, i.e., with |A| = | B|. This motivates considering the
analogues of the parameters a(G), ¢(G) and h(G), where one restricts the opti-
mization to balanced pairs. The resulting parameters are equal (up to scaling)
and hard to compute [3]. The complexity of determining whether a bipartite
graph admits a balanced maximum stable set remains unknown. However, hard-
ness of this problem would imply hardness of computing the parameter h(G).
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