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Abstract. We present a mixed integer programming formulation for
the problem of clustering a set of points in Rd with axis-parallel clusters,
while allowing to discard a pre-specified number of points, thus declared
to be outliers. We identify a family of valid inequalities separable in poly-
nomial time, we prove that some of them induce facets of the associated
polytope, and we show that the dynamic addition of cuts coming from
this family is effective in practice.
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1 Introduction

Given a set X = {x1, . . . , xn} of points in Rd and an integer p, the hyper-
rectangular clustering problem with axis-parallel clusters consists in determining
the p “smallest” axis-parallel hyper-rectangles Rd such that each point in X is
included in at least one such hyper-rectangle. If we also specify a number q of
possible outliers, then up to q points may not be included in any hyper-rectangle.

Hyper-rectangular clustering has been proposed as an alternative of explain-
able clustering [1], since it is straightforward to describe the obtained clusters
by their bounds. Previous works for this problem [2, 4, 3, 5] ask all points to be
clustered, i.e., q = 0 is assumed therein. In this work we tackle the case q > 0,
namely the clustering may discard up to a pre-specified number q of points,
which are thus declared to be outliers.

We consider the following mixed integer program minimizing the total cluster
span. For i ∈ [n] := {1, . . . , n} and c ∈ [p] := {1, . . . , p}, we consider the binary
variable zic representing whether xi is assigned to the cluster c or not. Also, for
c ∈ [p] and t ∈ [d] := {1, . . . , d}, the real variables ltc, r

t
c ∈ R represent the lower

and upper bound, respectively, of the cluster c in the axis t. For t ∈ [d], define
Xt := {xt : x ∈ X}, mint := min(Xt), and maxt := max(Xt). In this setting, we
can formulate the problem as follows.

min

p∑
c=1

d∑
t=1

rtc − ltc
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s.t.

p∑
c=1

zic ≤ 1 ∀i ∈ [n], (1)

ltc + (maxt − xit)zic ≤ maxt ∀i ∈ [n], c ∈ [p], t ∈ [d], (2)

rtc + (mint − xit)zic ≥ mint ∀i ∈ [n], c ∈ [p], t ∈ [d], (3)

ltc ≤ rtc ∀c ∈ [p], t ∈ [d], (4)
p∑

c=1

n∑
i=1

zic ≥ n− q, (5)

zic ∈ {0, 1} ∀i ∈ [n], c ∈ [p], (6)

mint ≤ ltc, r
t
c ≤ maxt ∀c ∈ [p], t ∈ [d]. (7)

The objective function asks to minimize the sum of all cluster spans along all
axes. Constraints (1) ask every point to be assigned to at most one cluster, and
a point is considered to be an outlier if it is assigned to no cluster. Constraints
(2)-(3) bind the variables, whereas constraints (4) avoid bound crossings for
empty clusters. Constraints (5) specify that at most q outliers can be selected,
and constraints (6)-(7) specify the variable domains. We define P(P, p, q) to be
the convex hull of all vectors (z, l, r) ∈ Rnp+2pd satisfying (1)-(7).

Theorem 1. Fix c ∈ [c] and t ∈ [d], and let α, β ≥ 0. The inequality

α rtc − β ltc ≥
n∑

i=1

γizic − δ (8)

is valid for P(P, p, q) if and only if (a) αx1−β x2 ≥
∑

x1≤xi
t≤x2

γi− δ for every

x1, x2 ∈ Xt, (b) δ ≥ β maxt − αmaxt, and (c) δ ≥ β mint − αmint.

The family of valid inequalities identified by Theorem 1 includes facet-defining
inequalities, as the following result shows.

Theorem 2. Assume x1t ≤ x2t ≤ · · · ≤ xnt and x1t < xnt . Let c ∈ [p], t ∈ [d], and
s ∈ [n]. Fix α, β ≥ 0 and let δ := min{(β−α)xnt , (β−α)x1t}. If αxit + δ ≥ βxi+1

t

for i = 1, . . . , n − 1, then the inequality (8) defines a facet of P(P, p, q), with
γs := (α−β)xst +δ, γi := β(xi+1

t −xit) for i = 1, . . . , s−1, and γi := α(xit−xi−1
t )

for i = s+ 1, . . . , n.

Theorem 1 shows that it suffices to check O(n2) conditions in order to guar-
antee validity of the inequality (8). This allows for a polynomial separation pro-
cedure for these inequalities, via linear programming. Given a fractional solution
(z∗, l∗, r∗), we consider the following formulation.

max β (l∗)tc − α (r∗)tc +

n∑
i=1

(z∗)ic γi − δ∑
x1≤xi

t≤x2

γi ≤ x1α− x2β + δ ∀x1, x2 ∈ Xt (9)
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β maxt − αmaxt ≤ δ (10)

β mint − αmaxt ≤ δ (11)

α+ β = n+ 1 (12)

α, β ≥ 0

γi ≥ 0 ∀i ∈ [n]

The objective function asks to maximize the cut depth. Constraints (9)-(11)
enforce the validity conditions (a)-(c) specified by Theorem 1, whereas constraint
(12) normalizes the coefficients. If the optimal value of this linear program is pos-
itive, then the optimal solution provides the coefficients of a violated inequality
(8) and viceversa. Since the fractional solution (z∗, l∗, r∗) only participates in the
objective function, we can set up one such linear program for each axis t ∈ [d],
and warm-start the resolution by updating the coefficients in the objective func-
tion every time a new fractional solution must be separated.

We have implemented a branch and cut procedure for the hyper-rectangular
clustering problem with axis-parallel clusters and outliers within the framework
provided by Cplex 12.4. The dynamic addition of cuts coming from the sep-
aration procedure specified above allows to trim the overall running time for
instances up to 80 points, due to a dramatic improvement in the total num-
ber of nodes in the enumeration tree. Also, the dynamic addition of cuts helps
to solve with optimality larger instances than with out-of-the-box solvers. As
future work, it is important to consider better separation strategies, since the
separation overhead degrades the overall performance for large instances.

An undesirable property of the formulation (1)-(7) is the presence of sym-
metry among the clusters. However, the addition of straightforward symmetry-
breaking constraints does not seem to improve running times in our experiments,
having in fact the opposite effect. Also, preliminary experiments with a simple
column-generation-based procedure over an extended formulation do not seem
promising either. The exploration of effective symmetry-breaking techniques for
this formulation is left as future work.
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