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1 Introduction

The knapsack problem and its variants have been widely studied in the literature
[1]. Indeed, many problems can be seen as a knapsack type problem. We define
and consider a variant of the knapsack problem defined as follows. Let M and N
be positive integers. Consider a knapsack problem with N groups of M items.
Let (i,5) be the item j of group 4. Within each group, order constraints are
such that any item (4, j) can be selected provided item (i, — 1) is selected. Item
(i,4) has value v;; and weight w;, which means that (¢, j) and (¢’,j) have the
same weight, thus the knapsack is symmetrically weighted with respect to the
groups. The Symmetrically Weighted Matrix Knapsack problem (SWMK) is to
maximizing the total value of the selected items, while the total weight is less or
equal to C, the capacity of the knapsack. The motivation for this variant of the
knapsack problem is that the SWMK is the core structure of the Hydro Unit
Commitment, which is a production scheduling problem relative to hydroelectric
units. Let x;; be the binary variable such that z;; = 1 if item (¢, j) is selected in
the solution. A formulation for the SWMK is the following

N M
max E E LijjVij

i=1j=1
N M
s.c. Z injwj <C
i=1j=1
Tij < Tij—1 VZ,V] > 1
Tij € {0, ].} VZ,V]

The SWMK is by definition a special case of the precedence-constrained knap-
sack problem [3]. Even if there are several groups of items, the SWMK is not a
multiple knapsack problem [4]. Indeed, the SWMK has a single global capacity
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constraint, applied on every group. The presented SWMK is with order con-
straints. Instead a formulation for the SWMK can be derived with disjunctive
constraints. Order constraints and disjunctive constraints lead to formulations
with the same LP relaxation [6]. In the general case, the SWMK is a general-
ization of the integer knapsack problem [5]. As the integer knapsack problem is
NP-hard, then the SWMK is also NP-hard.

2 Polyhedral study

From the convex hull, we distinguish three types of inequalities: inequalities
from the formulation (bounds, order, ...), inequalities with coefficients 0-1 called
binary inequalities, and inequalities with positive integer coefficients called in-
teger inequalities. Some bounds and the order inequalities are proved to be
facet-defining. In the article, the work focuses on finding necessary and suffi-
cient conditions for the binary inequalities to be facet-defining. The families of
inequalities from the knapsack [2] and the precedence-constrained knapsack [3]
do not contain the binary inequalities of the SWMK.

In term of dimension, when any item can be selected in a feasible solution, the
polyhedron is proven to be full dimensional. Also, if for an instance A of the
SWMK, an item cannot be selected in a feasible solution, it is possible to create
an instance B with fewer items, that has the exact same feasible solutions as A,
and for which any item can be selected in a feasible solution.

When an inequality is facet-defining for the SWMK, any permutation of the
group indices leads to another facet-defining inequality. Thus, for every facet-
defining inequality of the SWMEK, there is an exponential number of symmetric
facet-defining inequalities. In order to reduce the number of inequalities to be
handled, we define patterns.

Definition 1 (Pattern P). A pattern is a set of N sets S; C {1,.... M}, i < N.
Each set S; contains the indices j of the items in group i.

As the sets are not ordered, one pattern can represent every permutation of
group indices.

Definition 2 (Variable set X associated to P). A wvariable set X is as-
sociated to pattern P if for a given permutation ™ of {1,..,N}: z;; € X &
j € Sﬂ(i) eP.

Definition 3 (rank(P)). The rank(P) is the valid upper bound for the sum of
variables in any set X associated to P.

Definition 4 (Pattern inequalities). The pattern inequalities of a pattern P
are as follows, with X one of the sets of variables associated to P:

Z zi; < rank(P)

Ti;€X
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Theorem 1. Let P be a pattern where each set S; has cardinality at most one
and with rank(P) = p. The following conditions are necessary and sufficient for
pattern inequalities of pattern P to be facet-defining with X a set of variables
associated to P.

(i) [S;| >1 VS, € P
For every x;; € X, 3X' and X" such that

j—1 '
() > w+ Y Y wsC X C XN =pay ¢ X
k=1 iL‘,i/JvIEX/ k=1

N J’
(i) D we+ D D wp <O X'CX X =p—Tlay ¢ X
k=1 Ii/jlex” k=1

Condition (%) indicates that no group S; of P is empty. Condition (i%) stipulates
that for any group i, there is a feasible solution selecting item (i,5 — 1), j € S;
without selecting item (4, 7), and rank(P) items of P in groups different from 4.
Condition (éi7) specifies that for any group 4, there is a feasible solution selecting
the last item (4, M) of group i and rank(P) — 1 items of P in groups different
from 4. It can be shown that (i), (i4) and (#i7) can be checked in polynomial
time. Moreover, we prove that verifying (i¢) for 2 items and (4i7) for 1 item
is sufficient to verify (#¢) and (4i¢). We will show how to obtain facet-defining
conditions for more general patterns. Condition (7) is already a necessary facet-
defining condition for any pattern. Conditions (ii) and (¢ii) can be generalized
for any pattern, and can still be checked in polynomial time. It is proven that a
pattern P with one set .S; of cardinality 1, and no restriction on other sets, leads
to facet-defining inequalities of the SWMK if and only if (¢) and generalized
conditions corresponding to (ii) and (#i7) hold.
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