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1 Motivation

A Coding DNA Sequence (CDS) is the portion of a gene’s DNA or RNA that,
organized into nucleotide triplets called codons, encodes for a protein. During
RNA filament folding, the nucleotides aggregate into secondary structures whose
chemical (in)stability and stereometry may influence the interaction between
RNA and ribosomes. Stability is also relevant in RNA vaccination, where mRNA
coding sequences are inoculated in the host organism to make it produce proteins
that the immune system can recognize as potentially dangerous3.

Of the many indicators associated with a CDS, the Base Pair Number (BPN)
is often used in the literature to define properties relevant to global stability:
this indicator is defined as the largest number of hydrogen bonds a CDS can
form, according to Watson-Crick model or extensions, in a feasible folding [6, 9].
Incrementing the BPN can actually increase the chances nucleotide substrings
have to mutually form hydrogen links and hence fold into more or less complex
secondary structures. In fact, a correlation of BPN to other stability indicators
can generally be observed.

But, as different codons can encode for the same amino acid, the same protein
corresponds to a large number of synonymous CDSs. So, when cloning vectors are
inserted within a non-native organism to produce a specific protein, a problem
arises of choosing a “good” CDS out of many different ones. In our context, it
is then not sufficient to maximize the BPN of a single CDS, but is necessary to
solve the more complex problem of finding, among all the possible synonymous
CDSs that encode for a target protein, one that maximizes the BPN. To this
aim, we propose an exact algorithm that combines DP with implicit enumeration
and that, in our tests, proved to definitely outperform ILP approaches.

3 Such techniques have recently been proposed for vaccine in the current COVID-19
pandemic [2, 5]
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2 The problem

A protein, that is a sequence π = π1 · · ·πn of amino acids, is encoded by an RNA
filament formed by a sequence b1 · · · b3n of nucleotide bases, with bi ∈ {a,c,g,u}.
The i-th base triplet in the filament encodes for the i-th amino acid of π, and is
called a codon. Note that there exist 43 = 64 codons but only 20 amino acids,
thus the same amino acid can be encoded by a (known) set of different codons.

Once formed, the RNA filament folds onto itself due to hydrogen bonds
involving canonical base pairs a-u or c-g: in a feasible folding those bonds must
also observe the following structural constraints:

– Pairs are separated by at least 4 bases;
– Base pairs are no-crossing, that is, one never has i < i′ < j < j′ for any two

given pairs (bi, bj), (bi′ , bj′).

A basic question to be answered is then:

Problem 1. Given an RNA filament b1 · · · bm, m = 3n, what is the largest possi-
ble number of hydrogen bonds it can form in a feasible folding?

The BPN maximization problem we address in this paper is more complex as
it involves a search among a very large number of synonymous RNA sequences:

Problem 2. Find an RNA filament that, among those encoding for a given pro-
tein π, can form the largest possible number of hydrogen bonds.

3 The algorithm

Problem 2, as well as Problem 1, can be formulated in terms of Integer Linear
Programming (ILP). However, unlike other codon optimization problems [1, 7],
ILP is in this case known to behave quite badly due to a poor linear relaxation
and to the large number of inequalities needed to model no-cross constraints [4].

An O( m3

logm ) time dynamic programming (DP) algorithm is on the other hand

available for Problem 1 [3]. Extending it to Problem 2 requires to handle local in-
formation associated with protein encoding. In particular, for those amino acids
whose codons do not share a prefix (collectively denoted as Class II amino acids),
base pair information should be carried on through successive DP recursions.

To overcome this difficulty, our approach leverages the efficiency of the DP
method for fixed sequences together with an implicit enumeration scheme. Namely,
we devise a combinatorial branch-and-bound method where the decision tree has
a level for each Class II amino acid of the input protein π. At each node of the
tree we operate a binary choice on the prefix to be used in the encoding, and
find specific nucleotide sequences by DP:

– To get an upper bound, we find by DP a max BPN sequence where all the
Class II amino acids not yet fixed admit codons associated with different
amino acids (potentially leading to an infeasible sequence);
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– To get lower bounds, we run DP by fixing Class II codons in a feasible way,
according to the branches followed by the enumeration scheme up to that
node.

By the very structure of the problem, each leaf of the decision tree is associated
with a feasible solution.

Experimentally, our method proved to be efficient for both synthetic and real-
life RNA sequences of ∼ 200 nt, always finding optimal solutions in less than
4 minutes on average, after the exploration of a limited amount of branch-and-
bound nodes (≤ 9% the total search space). Moreover, the optimal sequences
found sensibly reduce the Minimum Free Energy and Average Unpair Probability
[8, 10] of the original RNA synonym, thus improving the global stability of the
RNA filament as measured by those indicators.

References
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