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1 Introduction

The Quadratic Transportation Problem (QTP) is an optimization problem de-
rived from the well known Transportation Problem (TP), where the objective
function is quadratic in the flow variables. While the TP has a combinatorial
nature and efficient combinatorial optimization algorithms have been developed,
the quadratic objective function of QTP breaks this structure. Indeed, the main
solution approaches for QTP are of continuous nature, mainly based on La-
grangean relaxations [1].

In this paper, we consider a particular QTP where the quadratic coefficients
depend on the supply and request levels of the transportation problem [2]. This
particular case of QTP arises in a statistical application that are described as
follows. Given a set of marginal frequencies ai, i = 1, . . . ,m, and bj , j = 1, . . . , n,
we want to find the joint distribution xij that maximizes the χ2 index, over a
given Fréchet class F (a, b) (for the details, see [2]). This is formulated as follows:

χ2 := max

m∑
i=1

n∑
j=1

1

aibj
x2
ij (1)

n∑
j=1

xij = ai i = 1, . . . ,m (2)

m∑
i=1

xij = bj j = 1, . . . , n (3)

0 ≤ xij ≤ uij = min{ai, bj} i = 1, . . . ,m, j = 1, . . . , n. (4)

Since ai and bj are positive numbers, the problem consists in maximizing a
convex function over a convex set, which is, in principle, a difficult problem. Due
to the convexity of the objective function, the optimal solution is an extreme
point of the feasible region. In [2], three combinatorial heuristics are proposed
to generate good extreme points of the transportation polytope, along with a
Frank-Wolfe approach to compute an upper bound (UB).
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In this paper, we introduce a new method to compute tight upper bounds,
based on the solutions of quadratic combinatorial subproblems. The combina-
torial subproblems can be solved by combinatorial algorithm that exploits the
cost structure of the problem.

2 An upper bound based on problem decomposition

Let α be a scalar, with α ∈ [0, 1]. For each original variable xij , we introduce
a twin variable yij that must be equal to xij . Hence, we can rewrite problem
(1)–(4) as follows

P (α) := max α

m∑
i=1

n∑
j=1

1

aibj
x2
ij + (1− α)

m∑
i=1

n∑
j=1

1

aibj
y2ij (5)

(2), (4)
m∑
i=1

yij = bj j = 1, . . . , n (6)

0 ≤ yij ≤ uij , i = 1, . . . ,m, j = 1, . . . , n (7)

xij = yij , i = 1, . . . ,m, j = 1, . . . , n. (8)

Note that the value of the optimal solution of P (α) is not affected by the value
of the parameter α. Moreover, we can prove the following result.

Theorem 1. P (α) is equivalent to P for any choice of α.

Let us consider the relaxation P̄ (α) of problem P (α) where constraints (8)
are eliminated. Hence, P̄ (α) can be decomposed into two separable subproblems
having the same structure:

PA(α) := max

α

m∑
i=1

n∑
j=1

1

aibj
x2
ij , such that (2), (4)

 ,

PB(α) := max

(1− α)

m∑
i=1

n∑
j=1

1

aibj
y2ij , such that (6), (7)

 .

Notice that for any value of α ∈ [0, 1], the sum of the optimal objective functions
value of PA(α) and PB(α) give an upper bound to the original problem P . Since
α is a parameter that multiplies the whole objective function, the best upper
bound is given by the minimum between PA(1) and PB(0).

Let us consider problem PA(1). All properties can be immediately extended
to PA(α) and to PB(α). Note that PA(1) is separable into m subproblems, since
the constraints and the objective function terms are independent. Let us identify
by PAi

the i-th subproblem:

PAi
:= max

 1

ai

n∑
j=1

1

bj
x2
ij , such that

n∑
j=1

xij = ai, 0 ≤ xij ≤ uij , j = 1, . . . , n

 .
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A direct consequence of the objective function convexity are the following results.

Theorem 2. The optimal solution of PAi has at most one component 0 < xih <
bh and all the other components xij equal to 0 or bj.

Corollary 1. If j̃ = argmin{bj | bj > ai} exists, then the optimal solution of
PAi

has xij = 0 for all j s.t. bj > bj̃.

Interestingly, the solution of problem PAi is indeed nontrivial.

Theorem 3. PAi
is NP-hard.

More importantly, we can show that problem PAi can be solved by a sim-
ple combinatorial method. The pseudocode is reported in Algorithm 2, where,
without loss of generality, we have supposed b1 ≤ b2 ≤ . . . ≤ bn.

Algorithm 1 Combinatorial algorithm for solving PAi

1: bestval← 0;
2: n′ = argmin{bj | bj > ai}
3: for h = 1, . . . , n′ do
4: S ← {1, . . . , n′} \ {h}
5: val← BestSol(ai, b, S, h)
6: if val > bestval then
7: bestval← val;
8: end if
9: end for
10: return bestval;

For each h such that xih can not be fixed to 0 exploiting Corollary 1, the
algorithm computes the best solution supposing that xih is the only component
of Theorem 2 that can be neither 0 or bh. Such a solution is provided by the
function BestSol(ai, b, S, h), which solves a combinatorial problem that can be
reformulated as two 0–1 knapsack problems. The solution with the maximum
value of the objective function among all h ∈ S is the optimal solution of PAi

.
A preliminary computational analysis has been performed on several tests

using as benchmarks a set of random instances similar to those proposed in [2].
Results show the effectiveness of the proposed method for some patterns of the
instances.
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