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Extended Abstract
The COVID-19 pandemic is a somber reminder of the danger of the spread of harmful contagions in
networks. It has infected over 250 million people and caused the death of over 5 million people1. The
pandemic also caused serious economic damage, see, e.g., [11]. Moreover, the spread of harmful contagions
is not only restricted to the spread of an infectious disease, but can also occur as computer viruses and
malware in computer networks [15]. Furthermore, the spread of fake news and propaganda in online
social networks is also a very pressing issue [10].

In this work, we introduce the measure-based spread minimization problem, which can be used to
model how to optimally minimize the spread of harmful contagions in networks. We are given a directed
graph G = (V, A) representing a network, a stochastic diffusion model for spread in the network, and a set
of initially infected nodes I ⊂ V . Let K be a set of labels each of which represents a certain relationship
(contact) type. While there can be multiple arcs between a node pair, each arc is labeled with exactly
one label. Blocking a label means taking a measure that prevents the contact between every pair of
nodes connected via an arc having that label. In other words, there is a measure associated with each
label which causes the arcs with the relevant label to be removed from the network. In a disease spread
context, possible measures could be closing of schools, closing of department stores, and the lock-down
of a certain area. A formal definition of the problem is given as follows.

Definition 1 (Measure-based spread minimization problem). Let G = (V, A) be a graph representing a
network and K be a finite set of labels. For each k ∈ K, we are given a measure cost ck ≥ 0. We are
given a label ℓ(i, j) ∈ K for each (i, j) ∈ A, a set of initially infected nodes I ⊂ V , and a stochastic
diffusion model M. Let σM(G, I) denote the expected number of infected nodes due to a spread triggered
by the seed set I ⊂ V on network G, under a stochastic diffusion model M. The measure-based spread
minimization problem consists of finding a set of measures to take (labels to block) within a budget such
that the expected number of infected nodes is minimized. Formally it is defined as

min
K′⊂K:c(K′)≤B

σM(GK′ , I)

where GK′ = (V, A \ {(i, j) ∈ A : ℓ(i, j) ∈ K ′}) and c(K ′) ≤ B is the budget constraint.

In [9] spread-blocking problems were introduced considering a deterministic diffusion model and an
objective of saving all non-seed nodes from infection while minimizing the cost for the needed blocking-
actions. Simple heuristics to solve them were presented. Similar heuristic work for spread-blocking
problems based on edge/node deletion in deterministic networks is also done in [8, 3, 7].

There exist also some work using exact methods to tackle problems related to ours: In [4], the authors
study which arcs to remove to minimize the spread in a deterministic linear threshold model and present
integer programming (IP) approaches for their problem. Another deterministic node-deletion problem
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motivated by the spread of influenza-virus was studied in [2]. In [5] a robust version of a node-deletion
problem is considered and IP approaches for solving it are presented. In [13] the goal is not to directly
minimizing the contagion but to reduce connectivity of the network by node deletions. A similar problem
is also tackled with IP and heuristics in [1]. In [12] two “spread related” deterministic metrics are defined
and IP formulations are developed to optimize these metrics through link removal. In [14] a bilevel
stochastic spread-blocking problem based on node-deletion is considered and solved using IP.

We present IP approaches to model our problem. The modeling approach is based on stochastic
programming and live-arc graphs (see, e.g., [6, 14]) to model the diffusion process. We propose a Benders
decomposition based solution algorithm to allow for the solution of large-scale instances. The algorithm
is enhanced with various components. We present a computational study to analyse the effectiveness of
our algorithm and also to gain managerial insights.
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