Polyhedral study of the Symmetrically Weighted Matrix Knapsack problem

Alexandre Heintzmann^{*1}, Cécile Rottner², and Pascale Bendotti^{3,4}

¹EDF Labs, LAAS-CNRS – EDF Recherche et Développement – France ²EDF Labs – EDF Recherche et Développement – France ³EDF RD – EDF Recherche et Développement – France ⁴Sorbonne Université, CNRS, LIP6 – Sorbonne Université, CNRS, LIP6 – France

Abstract

The Symmetrically Weighted Matrix Knapsack problem (SWMK) is a knapsack with M groups of N ordered items. Precedence constraints are such that an item can only be selected in a feasible solution if the previous one in the same group is selected. Item i of any group has the same weight, thus the knapsack being symmetrically weighted.

With the use of a structure called Patterns, necessary and sufficient conditions, that can be verified in polynomial time, are described for a set of facet defining inequalities for the SWMK.

More recent work aim to generelize these conditions to a larger set of facet defining inequalities.

*Speaker