Few Induced Disjoint Paths for H-Free Graphs

Barnaby Martin*1, Daniel Paulusma ${ }^{1}$, Siani Smith ${ }^{1}$, and Erik Jan Van Leeuwen ${ }^{2}$
${ }^{1}$ Durham University - United Kingdom
${ }^{2}$ Utrecht University - Netherlands

Abstract

Paths $P_{-} 1, \ldots, P_{-} k$ in a graph $G=(V, E)$ are mutually induced if any two distinct $P_{-} i$ and $P_{j} j$ have neither common vertices nor adjacent vertices. For a fixed integer k, the k-Induced Disjoint Paths problem is to decide if a graph G with k pairs of specified vertices (s_i,t_i) contains k mutually induced paths P_i such that each P_i starts from s_i and ends at ti. We prove new complexity results for k-Induced Disjoint Paths if the input is restricted to H -free graphs, that is, graphs without a fixed graph H as an induced subgraph. We compare our results with a complexity dichotomy for Induced Disjoint Paths, the variant where k is part of the input.

[^0]
[^0]: *Speaker

