Mixed-Integer Programming Formulations and Valid Inequalities for the Electric Vehicle Routing Problem

Arghavan Sharafi^{*1}, Nima Moradi^{*†2}, and Beste Basciftci³

¹Arghavan Sharafi – Faculty of Engineering and Natural Sciences, Sabanci University, Turkey ²Nima Moradi – Faculty of Engineering and Natural Sciences, Sabanci University, Turkey ³Beste Basciftci – Department of Business Analytics, Tippie College of Business, University of Iowa, Iowa City, IA, United States

Abstract

In recent years, many companies start to use Electric Vehicles (EV) to encounter environmental issues. In the literature, Electric Vehicle Routing Problem (E-VRP) is introduced to handle the new challenges of using EVs. E-VRP aims to route a fleet of capacitated EVs to serve customers' demands while minimizing the total travel distance, considering battery restrictions. In this paper, four Mixed-Integer linear programming formulations of E-VRP and several valid inequalities are presented. The efficiencies of the models and valid inequalities are investigated based on the execution time, the number of nodes explored in the Branch-and-Bound, and LP-bounds over various-sized instances.

^{*}Speaker

[†]Corresponding author: nimamoradi@sabanciuniv.edu