High Multiplicity Strip Packing with Three Rectangle Types

Andrew Bloch-Hansen*+1, Roberto Solis-Oba ${ }^{1}$, and Andy Yu ${ }^{1}$
${ }^{1}$ Western University - 1151 Richmond St, London, ON N6A 3K7, Canada

Abstract

The two-dimensional strip packing problem consists of packing in a rectangular strip of width 1 and minimum height a set of n rectangles, where each rectangle has width $0<\mathrm{w}$ $<=1$ and height $0<\mathrm{h}<=\mathrm{hmax}$. We consider the high-multiplicity version of the problem in which there are only K different types of rectangles. For the case when $\mathrm{K}=3$, we give an algorithm providing a solution requiring at most height $3 / 2 \mathrm{hmax}+\epsilon$ plus the height of an optimal solution, where ϵ is any positive constant.

[^0]
[^0]: *Speaker
 ${ }^{\dagger}$ Corresponding author: ablochha@uwo.ca

