Generating Spanning Tree Sequences of a Fan Graph in Lexicographic Order and Ranking/Unranking Algorithms

Ro-Yu Wu^{*1}, Cheng-Chia Tseng², Ling-Ju Hung³, and Jou-Ming Chang^{†2}

¹Department of Industrial Management, Lunghwa University of Science and Technology – Taiwan ²Institute of Information and Decision Sciences, National Taipei University of Business – Taiwan

³Department of Product Innovation and Entrepreneurship, National Taipei University of Business –

Taiwan

Abstract

Cameron et al. recently presented an algorithm for generating all spanning trees of a fan graph that fulfill the so-called pivot Gray code property in O(1)-amortized time. They also presented algorithms for ranking and unranking a spanning tree in the listing in O(n) time using O(n) space. This paper first observes that all spanning trees of a fan graph can be naturally represented by integer sequences with regular properties. We propose a simple algorithm for generating spanning-tree sequences in lexicographic order in O(1)-amortized time according to these properties. Additionally, based on the lexicographic order, we develop ranking and unranking algorithms in O(n)-time using n+O(1) space.

 $^{^*}Speaker$

 $^{^{\}dagger}$ Corresponding author: spade@ntub.edu.tw